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Abstract—There have been major advances in our knowledge of the contribution of DNA sequence variations to 
cardiovascular disease and stroke. However, the inner workings of the body reflect the complex interplay of factors 
beyond the DNA sequence, including epigenetic modifications, RNA transcripts, proteins, and metabolites, which together 
can be considered the “expressed genome.” The emergence of high-throughput technologies, including epigenomics, 
transcriptomics, proteomics, and metabolomics, is now making it possible to address the contributions of the expressed 
genome to cardiovascular disorders. This statement describes how the expressed genome can currently and, in the future, 
potentially be used to diagnose diseases and to predict who will develop diseases such as coronary artery disease, stroke, 
heart failure, and arrhythmias.   (Circ Cardiovasc Genet. 2017;10:e000037. DOI: 10.1161/HCG.0000000000000037.)
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In no small part as a result of the completion of the Human 
Genome Project, considerable effort has been invested over 

the past few decades in understanding the contribution of genet-
ics to the risk of cardiovascular diseases and stroke. Genome-
wide association studies, candidate gene sequencing studies, 
and unbiased whole-exome sequencing studies of large size 
have been completed for a wide variety of cardiovascular phe-
notypes. Many other such studies are in progress. These studies 
have resulted in major advances in our knowledge of the contri-
bution of variation in the DNA sequence to these phenotypes.1

Somewhat less attention has been given to the factors that 
render the genetic code into the functional consequences that 
influence a person’s health, that is, the “expressed genome,” 
including gene-regulatory elements, RNA transcripts, proteins, 
metabolites, and circulating cells in the bloodstream (Figure). 
Accordingly, the relationships between these factors and car-
diovascular diseases and stroke are less well understood. The 
recent emergence of high-throughput technologies centered on 
transcriptomics, epigenomics, proteomics, metabolomics, etc, 
is now making it possible to address the contributions of the 
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expressed genome to cardiovascular diseases and to discover 
novel types of biomarkers for these diseases.

The purpose of this statement is to summarize the state of 
the science with respect to the use of nongenetic “omics” tech-
nologies for the refinement of disease mechanisms. A major 
focus is coronary artery disease (CAD), but new insights into 
stroke, heart failure, and arrhythmias also are presented. This 
statement additionally serves to identify issues to be addressed 
to enable the use of the expressed genome for diagnosis and 
prediction in the clinic, especially the need for systematic rep-
lication of omics findings in independent studies.

From the Central Dogma  
to Whole-Organism Phenotypes

The central dogma describes the orderly transfer of genetic 
information from the DNA in the genome to other types 

of molecules, specifically from DNA to RNA to proteins. 
The human genome comprises 23 pairs of chromosomes, 
among which are embedded an estimated 20 000 protein-
coding genes. Each gene consists of a DNA sequence, with 
some combination of adenine, cytosine, guanine, and thy-
mine bases, on 1 strand of the double-stranded DNA mol-
ecule that lies at the core of the chromosome. Within this 
DNA sequence lies the coding sequence for a protein; the 
coding sequence can be either a single portion of the gene 
sequence or multiple portions of the gene sequence that are 
subsequently spliced together to create a continuous coding 
sequence. The coding sequence contains the information 
needed to produce a protein.

In the process of transcription, the information in a gene 
sequence is transferred from the DNA strand containing the 
gene sequence to a single-strand RNA molecule. This RNA 

Figure.  The expressed genome and associated analytic approaches. Me indicates a methyl group.
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transcript contains the same sequence of bases as the DNA 
strand except that uracil is substituted for thymine. The tran-
script is subsequently processed into the mature form known 
as the mRNA, in which the coding portions have been spliced 
together into a single continuous sequence, with the interven-
ing sequences being discarded. The mRNA is modified in other 
ways to allow the subsequent translation of the information in 
the coding sequence into a protein. The level of expression of a 
gene is represented by the number of existing RNA transcripts 
that were produced from that gene within a given cell. The col-
lection of RNA transcripts produced from all of the genes in 
the genome in a cell is known as the transcriptome, the study 
of which is known as transcriptomics. It is feasible to study 
the combined transcriptome of a set of cells, whether the cells 
reside in an organ or the cells are circulating in the bloodstream.

Of note, there are multiple mechanisms by which the 
process of transcription is regulated, allowing more or fewer 
RNA transcripts to be produced from a given gene. The region 
of DNA just upstream of the start of a gene, known as the pro-
moter, can bind to a variety of proteins. Some of these proteins 
favor transcription, thus increasing the expression of the gene, 
whereas other proteins inhibit transcription, thus decreasing 
gene expression. Certain regions of DNA that are physically 
separate from the gene and can lie as far as megabases (mil-
lions of bases) away have the ability to bind proteins that 
can modulate transcription of a gene from a distance; these 
regions are known as enhancers and repressors. The proteins 
responsible for modulating transcription are known as tran-
scription factors.

In addition to the protein-coding genes in the genome, sev-
eral thousand regions can be transcribed into RNA molecules 
that do not contain information that encodes proteins but can 
nevertheless modulate the expression of protein-coding genes. 
Two well-described classes of so-called noncoding RNAs are 
microRNAs and long intervening noncoding RNAs. Through 
different mechanisms, both microRNAs and long intervening 
noncoding RNAs can affect the transcription of genes or the 
stability of their RNA transcripts, conferring an additional 
level of control of gene expression.

Within a chromosome, the DNA molecule is part of a com-
plex known as chromatin, which includes a group of proteins 
known as histones. Depending on the configuration of these 
histones, which can be altered via biochemical modifications, 
an area of a chromosome may be more open or closed to tran-
scription. Biochemical modifications of DNA bases within or 
near a gene sequence can also affect the level of transcription 
of the gene. The most common such modification is methyla-
tion of cytosine bases. In general, methylation tends to result 
in reduced transcription, thus silencing the gene. The collec-
tion of biochemical alterations to the DNA sequence and his-
tone proteins within the chromosomes in the genome is known 
as the epigenome, and the study of such alterations is known 
as epigenomics.

The information encoded in mRNAs is used to produce 
proteins via the process of translation. Ribosomes scan 
through the coding sequence in an mRNA molecule and use 
each set of 3 bases, known as a codon, to specify a particular 
amino acid. The amino acids are attached in series, forming a 
lengthening protein strand. After a ribosome finishes scanning 

the coding sequence, the completed protein is released from 
the ribosome and is then transported to the appropriate com-
partment of the cell or secreted into an extracellular space, 
for example, the bloodstream. Proteins can serve in a vari-
ety of roles, including as structural elements, as enzymes that 
catalyze biochemical reactions, as transcription factors, and as 
secreted hormones that foster communication between differ-
ent types of cells. The collection of proteins present within a 
cell, within an organ, or within a fluid space (eg, bloodstream) 
is known as the proteome, and the study of the proteome is 
known as proteomics.

Enzymatic proteins act on a variety of substrates. In some 
cases, the substrates are other proteins, resulting in biochemi-
cally modified proteins with important functional conse-
quences (an example being histone proteins in chromosomes). 
Other types of macromolecules also are amenable to enzy-
matic action. The products of enzymatic reactions and other 
biochemical processes are known as metabolites and can be 
present within cells or in extracellular compartments. The 
substrates that are converted to metabolites can originate from 
within the body or can be ingested. The collection of metabo-
lites present within a cell, an organ, or a fluid space (eg, blood-
stream) is known as the metabolome, the study of which is 
known as metabolomics.

Transcriptomics, epigenomics, proteomics, and metabo-
lomics represent the analysis of macromolecule profiles that 
encompass different aspects of the expressed genome. These 
profiles are not simply a carbon copy of the information 
encoded in the genome (DNA) but reflect the interplay of the 
genetic information with a variety of environmental influences 
that impinge on the processes of transcription, translation, and 
enzymatic action. Just as variations in the DNA sequence can 
be studied with respect to their relationships with various 
phenotypes and diseases, so too can each class of macromol-
ecules. It should be apparent that the functional consequences 
of genetic information that is combined with environmental 
influences are not limited to changes in these macromolecules 
but can manifest, and be measured, with respect to higher-
order phenomena in the body. Whereas circulating cells in 
the bloodstream can be collected and studied with respect to 
the macromolecules carried within them, other properties of 
the cells such as the composition and number of cells in the 
compartment also are relevant to diseases. Important proper-
ties of noncirculating cells and tissues can be assessed through 
increasingly sophisticated, noninvasive molecular imaging 
techniques.

One important distinction between genetics and omics 
analyses is the temporality and dynamic changes observed in 
omics profiles. Genetic factors are fixed throughout the life-
time, so there is no need to be concerned about the temporality 
of effects and thus no issue of timing of sample collection. On 
the other hand, omics measures generally reflect a dynamic 
process, raising the issues of determining the optimal timing 
of measurements relative to disease onset and the possibility 
of reverse causation, that is, the disease driving changes in 
omics profiles rather than the omics profiles reflecting causa-
tion of the disease.

As related throughout the remainder of this document, 
profiling of each of these various aspects of the expressed 
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genome can potentially provide unique information that aids 
in the refinement of disease mechanisms and in the diagnosis 
and prediction of cardiovascular diseases and stroke.

General Considerations
In terms of the contribution of different categories of biomark-
ers from the expressed genome for diagnosis and prediction, 
some general considerations should be remembered. These 
include things such as clinical phenotyping (specifying the 
question and patient population), methodological readiness, 
refinement of mechanisms, and how to apply the knowledge 
in the clinical setting. In this section, we provide some general 
thoughts and guidelines on how to address these issues that 
are relevant for each of the subsequent sections that discuss 
different categories of biomarkers and methodologies.

Clinical Phenotyping
A phenotype refers to an observable trait. Technically speak-
ing, even a genotype is a type of a phenotype because it is 
observable. In clinical use, phenotyping refers to the trait that 
is being studied such as myocardial infarction (MI) or stroke. 
A phenotype such as MI may have numerous subphenotypes 
such as hypertension, hyperlipidemia, or sensitivity to tobacco 
use, each of which may also have its own subphenotypes such 
as salt sensitivity, lipid plaque stability, or nicotine addiction. 
The harmonization of phenotypes refers to having a common 
definition of the phenotype being studied. For example, in the 
evaluation of hypertension, different studies may have defined 
hypertension differently. Such definitions include clinician 
diagnosis, actual blood pressure testing, cutoffs for systolic 
and diastolic pressures or either one alone, presence of hyper-
tensive end-organ conditions such as left ventricular hypertro-
phy, or use of a medication to treat hypertension.

Although one may desire that all studies participating in 
a project use exactly the same definition of a phenotype to 
minimize heterogeneity, this often comes at an unnecessary 
sacrifice of statistical power. For example, one study might 
have diagnosed hypertension by actual blood pressure testing 
without treatment, and another study of a similar size might 
have used the same definition but also included patients with 
left ventricular hypertrophy if no other causes of the hyper-
trophy were present. The slight loss in phenotypic purity in 
the second study may be more than offset by the increased 
sample size (and consequent increase in power) to detect a 
relationship to hypertension. All of the subjects likely had 
hypertension even if the definitions differed slightly by study. 
When large consortia evaluate findings from multiple dif-
ferent studies, meta-analyses can evaluate the heterogeneity 
of the results and outliers in the results. If slightly different 
definitions were used but the heterogeneity is minimal across 
results from different studies, it is reassuring that the slight 
variation did not affect the overall results and interpretation. 
Alternatively, when high levels of heterogeneity occur, how 
one study differs from the next (such as regarding pheno-
typic definition) should be carefully considered. If available, 
information on the reliability and validity of a definition of 
a phenotype can be useful in determining which definition 
to use. Marginal increases in reliability and validity may not 

ultimately be worth the sacrifice of power lost from using an 
overly parsimonious system. In general, as long as secondary 
analyses using a more refined definition in subgroup analyses 
can be performed, most studies have tended toward greater 
inclusiveness to increase power.

Controls are purest when they do not have the phenotype 
being studied; are similar or matched by age, race/ethnicity, 
sex, and geographic population; and are randomly selected 
from the population. Controls frequently do not undergo the 
same level of testing that cases do to ensure that they do not 
have the underlying condition or phenotype (if asymptom-
atic). However, if the frequency of the condition is expected 
to be low among the controls, the loss of power from requir-
ing testing will offset the marginal misclassification bias of 
having a small portion of the controls with the phenotype of 
interest. Demographics and geographic population should be 
evaluated to avoid identifying relationships to those factors 
rather than to the phenotype of interest.

In summary, a phenotype is an observable trait. In practice, 
the necessity of high power to detect small effect sizes tends to 
have greater influence in deciding how to define a phenotype 
to permit greater inclusiveness, provided that the level of het-
erogeneity can be evaluated and, if necessary, accounted for.

Refinement of Mechanisms
An important consideration in the evaluation of novel bio-
markers is whether they can assist in the refinement of 
mechanisms. Although at least in principle this is irrelevant 
for disease diagnosis, prediction, and prognosis, it is highly 
relevant for understanding the underlying pathophysiology 
of cardiovascular diseases; therefore, it is essential for the 
development of new therapeutic approaches. Hence, refine-
ment of disease mechanisms is usually, and rightfully so, one 
of the main objectives of any study of biomarkers from the 
expressed genome. This increased understanding of disease 
mechanisms is often also the most important contribution of 
these biomarker studies, especially in early-stage discovery 
studies of novel biomarkers for cardiovascular diseases.

Biomarker studies can broadly be divided into targeted (or 
candidate-driven) and untargeted (or discovery) approaches. 
The targeted approaches are based on a hypothesis about a 
specific mechanism or pathway; therefore, they typically focus 
on 1 or a few biomarkers representing that biological system. 
In contrast, the untargeted approaches are hypothesis free, or 
rather hypothesis generating, and aim at surveying a whole 
class of biomarkers in an unbiased way. The use of untar-
geted approaches is a hallmark of omics studies. Many con-
temporary omics studies aim at assessing the whole genome, 
transcriptome, and increasingly the whole proteome or metab-
olome. In general, advantages of targeted approaches include 
lower burden of statistical testing (and hence less risk for 
false-positive findings), analytical assays that are specifically 
developed for the biomarkers in question, and less complex 
bioinformatics analyses. However, the main disadvantages 
of targeted approaches include being restricted to hypotheses 
from prior biological knowledge and the hypothesis testing 
being limited to the specific biological system being surveyed. 
In human genomics, unbiased genome-wide association stud-
ies dramatically changed the whole field, going from a handful 

D
ow

nloaded from
 http://ahajournals.org by on A

pril 10, 2019



e5    Musunuru et al    Expressed Genome in Cardiovascular Diseases and Stroke

to thousands of robust genetic associations in just a few years. 
The learning experience was that untargeted approaches, if 
properly applied with adequate sample sizes and independent 
replication of top associations, can be very efficient in terms 
of finding new biomarkers that can help refine mechanisms 
and possibly change clinical care.2

Another aspect when considering refinement of mecha-
nisms is the tissue specificity of a biomarker. The majority 
of biomarker studies, especially large-scale studies from the 
population, have been performed in a biological matrix easily 
accessible to the research team such as serum or urine. This 
may be adequate for some research questions and biomark-
ers, but it may be less suitable for others. For example, if the 
purpose of a project is to find circulating protein markers that 
can be easily measured in point-of-care testing to diagnose MI 
in patients with chest pain, a blood sample is clearly adequate. 
However, if the purpose is to refine tissue and cellular mecha-
nisms involved in cerebral small vessel disease, blood or urine 
samples are less likely to be as useful. Therefore, it is always 
important to be aware of the research question and to consider 
the fidelity of the proxy tissue used if the primary tissue is not 
accessible.

Application of New Knowledge in the Clinical 
Setting
Although much of the content of this statement relates to 
new knowledge provided by omics studies into pathogenetic 
mechanisms of cardiovascular diseases, the ultimate objective 
of the search for this new knowledge is the improvement of 
patient care. Therefore, a critical consideration as to whether 
findings gleaned from new omics technologies are appropriate 
for real-world application to cardiovascular disease predic-
tion and treatment is the need for independent external rep-
lication of the findings. There is still much work to be done 
with respect to most of the findings reported in this statement, 
precluding any serious consideration of their application in a 
clinical context at the present time.

This issue was addressed by an Institute of Medicine report 
published in 2012, Evolution of Translational Omics: Lessons 
Learned and the Path Forward,3 that was necessitated in part 
by the erroneous application in clinical practice of omics find-
ings that lacked external validity, potentially causing harm to 
patients. This report described a 3-step process of translating 
omics to the clinic: the discovery phase, the test validation 
phase, and the evaluation for clinical utility and use phase.

Prompted by the Institute of Medicine report, the National 
Cancer Institute convened a working group of scientists rep-
resenting multiple areas of expertise relevant to omics-based 
test development and other stakeholders, resulting in the 
publication of a checklist of 30 criteria for determining the 
readiness of omics-based tests to guide patient care in clinical 
trials (Table).4 The intent of the checklist is to evaluate pro-
posals for National Cancer Institute–sponsored clinical trials 
in which omics tests are to be used. Although not all of the 30 
specific criteria may be directly relevant to every conceivable 
application of omics findings, it can nevertheless be instruc-
tive to broadly consider the underlying principles in judging 
whether an application has been appropriately evaluated for 
clinical use. In the next 2 sections, we describe some of the 

considerations highlighted by the Institute of Medicine and 
National Cancer Institute publications.

Methodological Readiness
One of the key questions in the evaluation of novel biomark-
ers concerns the analytical methods and their readiness for 
scaling, point-of-care measurements, and clinical imple-
mentation. Hence, in the evaluation of a novel biomarker, it 
is important to understand how the assay was devised and 
validated. First, what were the circumstances under which 
the novel biomarkers were discovered? What were the char-
acteristics of the study population? In what conditions were 
specimens obtained? What analytical method was used for the 
biomarker measurement? How were the diagnostic classifiers 
developed and evaluated? Second, how was the assay exter-
nally validated? Was the optimal timing for the measurement 
of analytes assessed? What were the clinical characteristics of 
the patient populations? What were the details of the statisti-
cal analysis plans, and were they developed before or after 
the analysis was performed? All of these questions, as well 
as other questions about the assay and analytical methods, 
are relevant in the interpretation of results of a research study 
reporting a novel promising biomarker for the diagnosis or 
prediction of a cardiovascular disease.

As a first step, the readiness of a novel biomarker assay 
for translation to clinical practice can be evaluated by assess-
ment of the quality of the underlying science. For example, 
a biomarker might have been discovered in a large study 
population that is a good representation of the underlying 
population in which the biomarker should be used. A second 
biomarker might have been discovered in a small study popu-
lation with many inclusion and exclusion criteria. The first 
biomarker is more likely to be ready for clinical translation 
than a biomarker discovered in a small study population with 
many inclusion and exclusion criteria. Similarly, an assay that 
has already been implemented at a core hospital laboratory is 
readier for translation than an assay developed for the specific 
study using dedicated, specific methods that can be difficult 
for other laboratories to replicate. Furthermore, the diagnostic 
classifiers used should be reliable, validated, and therapeuti-
cally relevant rather than developed specifically for that bio-
marker study. Finally, there should be evidence that the novel 
biomarker provides incremental information when added to 
well-established clinical risk factors and biomarkers.

One common obstacle when trying to go from the discov-
ery of novel biomarkers to clinical implementation is that the 
analytical methods and regulatory requirements are very dif-
ferent in the phases of scientific discovery and clinical appli-
cation. For example, the discovery of novel biomarkers can 
be done with any method, laboratory, and personnel as long 
as ethical permits are adhered to and the peer review process 
recognizes the science as being sound. In contrast, the clinical 
application of a biomarker assay involves certifications and 
quality standards set forth by regulatory authorities such as the 
US Food and Drug Administration and Centers for Medicare 
& Medicaid Services through the Clinical Laboratory 
Improvement Amendments.5 Apart from challenges arising 
from regulatory issues, there are often technical barriers to 
the readiness for scaling, point-of-care measurements, and 
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Table.  National Cancer Institute Criteria for the Use of Omics-Based Predictors in Clinical Trials

Domain Criteria

Specimen issues Establish methods for specimen collection and processing and appropriate storage conditions to ensure the suitability of specimens for use with the 
omics test.

Establish criteria for screening out inadequate or poor-quality specimens or analytes isolated from those specimens before performing assays.

Specify the minimum amount of specimen required.

Determine the feasibility of obtaining specimens that will yield the quantity and quality of isolated cells or analytes needed for successful assay 
performance in clinical settings.

Assay issues Review all available information about the SOPs used by the laboratories that performed the omics assays in the developmental studies, including 
information on technical protocol, reagents, analytical platform, assay scoring, and reporting method, to evaluate the comparability of the current 
assay to earlier versions and to establish the point at which all aspects of the omics test were definitively locked down for final validation.

Establish a detailed SOP to conduct the assay, including technical protocol, instrumentation, reagents, scoring and reporting methods, calibrators 
and analytical standards, and controls.

Establish acceptability criteria for the quality of assay batches and for results from individual specimens.

Validate assay performance by using established analytical metrics such as accuracy, precision, coefficient of variation, sensitivity, specificity, linear 
range, limit of detection, and limit of quantification, as applicable.

Establish acceptable reproducibility among technicians and participating laboratories and develop a quality assurance plan to ensure adherence to a 
detailed SOP and to maintain reproducibility of test results during the clinical trial.

Establish a turnaround time for test results that is within acceptable limits for use in real-time clinical settings.

Model development, 
specification, 
and preliminary 
performance 
evaluation

Evaluate data used in developing and validating the predictor model to check for accuracy, completeness, and outliers. Perform retrospective 
verification of the data quality if necessary.

Assess the developmental data sets for technical artifacts (eg, effects of assay batch, specimen handling, assay instrument or platform, reagent, or 
operator), focusing particular attention on whether any artifacts could potentially influence the observed association between the omics profiles and 
clinical outcomes.

Evaluate the appropriateness of the statistical methods used to build the predictor model and to assess its performance.

Establish that the predictor algorithm, including all data preprocessing steps, cut points applied to continuous variables (if any), and methods for assigning 
confidence measures for predictions, are completely locked down (ie, fully specified) and identical to prior versions for which performance claims were made.

Document sources of variation that affect the reproducibility of the final predictions and provide an estimate of the overall variability along with 
verification that the prediction algorithm can be applied to 1 case at a time.

Summarize the expected distribution of predictions in the patient population to which the predictor will be applied, including the distribution of any 
confidence metrics associated with the predictions.

Review any studies reporting evaluations of the performance of the predictor to determine their relevance for the setting in which the predictor is 
being proposed for clinical use.

Evaluate whether clinical validations of the predictor were analytically and statistically rigorous and unequivocally blinded.

Search public sources, including literature and citation databases, journal correspondence, and retraction notices, to determine whether any 
questions have been raised about the data or methods used to develop the predictor or to assess its performance and ensure that all questions have 
been adequately addressed.

Clinical trial design Provide a clear statement of the target patient population and intended clinical use of the predictor and ensure that the expected clinical benefit is 
sufficiently large to support its clinical utility.

Determine whether the clinical utility of the omics test can be evaluated with stored specimens from a completed clinical trial (ie, a prospective-
retrospective study).

If a new prospective clinical trial will be required, evaluate which aspects of the proposed predictor have undergone sufficiently rigorous validation to 
allow treatment decisions to be influenced by predictor results; when treatment assignments are randomized, provide justification for equipoise.

Develop a clinical trial protocol that contains clearly stated objectives and methods and an analysis plan that includes justification of sample size; 
lock down and fully document all aspects of the omics test and establish analytical validation of the predictor.

Establish a secure clinical database so that links among clinical data, omics data, and predictor results remain appropriately blinded, under the 
control of the study statistician.

Include in the protocol the names of the primary individuals who are responsible for each aspect of the study.

Ethical, legal, and 
regulatory issues

Establish communication with the individuals, offices, and agencies that will oversee the ethical, legal, and regulatory issues relevant to the conduct 
of the trial.

Ensure that the informed consent documents to be signed by study participants accurately describe the risks and potential benefits associated with 
use of the omics test and include provisions for banking of specimens, particularly to allow “bridging studies” to validate new or improved assays.

Address any intellectual property issues concerning the use of the specimens, biomarkers, assays, and computer software used to calculate the predictor.

Ensure that the omics test is performed in a Clinical Laboratory Improvement Amendments–certified laboratory if the results will be used to 
determine treatment or will be reported to the patient or the patient’s physician at any time, even after the trial has ended or the patient is no longer 
participating in the study.

Ensure that appropriate regulatory approvals have been obtained for investigational use of the omics test. If a prospective trial is planned in which 
the test will guide treatment, consider a presubmission consultation with the US Food and Drug Administration.

SOP indicates standard operating procedure. 
Modified from McShane et al.4 Copyright © 2013 Macmillan Publishers Ltd. This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 

Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0
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clinical implementation of novel biomarker assays. Large 
development costs and efforts may be involved in the transla-
tion of an assay from a small-scale, in-house measurement to 
an assay that can be performed at a larger scale with the high 
quality needed for clinical implementation.

Utility of New Tests in the Clinical Setting
Ultimately, the overall purpose of any biomedical research 
is that it should improve human health, often by advancing 
clinical care. There are several ways that increased knowledge 
about the expressed genome can achieve this. Knowledge of 
the underlying pathophysiology of diseases is the first step 
toward new therapeutic approaches, as discussed above. 
The road from an initial observation in an omics study to an 
approved therapy that can be used to treat patients is long and 
complicated, but drug development is nevertheless one of 
the key rationales for any studies of the expressed genome. 
Another common goal for these studies, which at least in 
theory could lead to clinical applications more swiftly, is the 
development of biomarker tests to be used to predict disease 
risk, to diagnose disease, and to prognosticate risk of recur-
rence or other adverse outcomes.

The methods used to study novel biomarkers in predic-
tion, diagnosis, and prognosis, as well as previously nomi-
nated biomarkers, have been thoroughly described and 
evaluated elsewhere.6–8 Briefly, they involve measures of 
association, discrimination, calibration, reclassification, and 
cost-effectiveness. Other important aspects in the evaluation 
of biomarkers include safety, replication across different pop-
ulations, needs to re-educate clinicians and the general public, 
and usefulness for motivating patients. The first requirement 
of a novel biomarker is that it is robustly associated with the 
outcome in question, preferably across different study popula-
tions and after established predictors are taken into account. 
However, when clinical usefulness is being judged, a signifi-
cant P value from a multivariable model is far from enough. 
Adequate assessment of biomarkers for prediction, diagnosis, 
or prognosis typically also should involve metrics of discrimi-
nation, calibration, and reclassification.

Discrimination refers to the capacity of a test to separate 
individuals who go on to develop disease (prediction), who are 
diseased (diagnosis), or who go on to have an adverse event 
(prognosis) from individuals who do not. The most common 
discrimination metric is the C statistic or the area under the 
receiver-operating characteristic curve, which combines the 
sensitivity (true-positive rate) and specificity (true-negative 
rate) of a test.9 This metric reflects the probability that a 
randomly selected individual from the diseased group has a 
higher predicted risk than a randomly selected individual from 
the nondiseased group. Hence, a C statistic of 1.0 means a 
perfect test, whereas a C statistic of 0.5 means a worthless test 
providing no information beyond randomness. For the predic-
tion of coronary heart disease in a previously healthy popula-
tion, a model including only age and sex typically yields a C 
statistic of 0.65 to 0.70, whereas the Framingham Risk Score 
reaches ≈0.75.10

Calibration reflects the agreement between predicted and 
observed risk across groups of individuals with different base-
line risk. A commonly used metric is the Hosmer-Lemeshow 

statistic,11 although graphical models (calibration curves) are 
commonly used. An intrinsic limitation of both discrimination 
and calibration metrics is that they give equal importance to 
individuals across the whole risk spectrum, which may not 
be the case in the real clinical setting. In practice, biomark-
ers may be most useful when applied in a specific, narrower, 
range of risk as a “tiebreaker test” in individuals with interme-
diate risk for whom additional knowledge really can make a 
difference in the clinical decision making.

Reclassification metrics have been introduced to address 
this need, and the measure that has become most popular 
is the net reclassification index.12 The net reclassification 
index gives an assessment of the extent to which the addi-
tion of a novel biomarker to a risk prediction model moves 
(or reclassifies) individuals across a predefined risk threshold. 
This metric is most suitable in situations in which there are 
established risk thresholds at which the clinical management 
changes. One example is the 5% and 7.5% absolute 10-year 
risk thresholds for atherosclerotic cardiovascular disease in 
the 2013 American College of Cardiology/American Heart 
Association guidelines on lipid management.13 The net reclas-
sification index is also useful in the sense that it translates the 
continuous nature of a risk gradient arising from a risk predic-
tion equation into a clinically actionable yes-or-no decision; 
that is, to treat or not to treat. In addition to the most common 
metrics, discrimination, calibration, and reclassification, dif-
ferent measures addressing cost-effectiveness can be useful 
for evaluating novel biomarkers and their utility in the clinical 
setting. For example, the number needed to test reflects the 
number of individuals who need to be tested to correctly pre-
dict, diagnose, or prognosticate an additional event. This can 
be a useful metric, especially when balanced against the cost, 
patient burden, and side effects of the test in a cost-effective-
ness analysis.

Some existing risk algorithms, for example, the prediction 
of coronary heart disease in healthy populations, are already 
quite accurate, and as a result, additional risk markers need 
to show very large effect sizes to show any improvement in 
C statistics.14 It has been argued that it is a waste of time and 
resources to perform additional studies trying to discover 
novel biomarkers for risk prediction and that it would be better 
to focus on applying preventive measures known to be effec-
tive. This point certainly has some validity, but it is important 
to recognize a few caveats. Population-based primary preven-
tion strategies have had very limited success in the past (for 
a number of reasons). A combination of a larger number of 
novel biomarkers such as those arising from omics studies 
of the expressed genome is more likely to show substantial 
improvements in risk prediction (and there is still much room 
for improvement, even in the situations in which the risk algo-
rithms work relatively well). There are many clinical situa-
tions in which there is a lack of good prediction algorithms. 
Finally, as pointed out above, risk prediction is just one poten-
tial use of studies of the expressed genome. In many cases, the 
primary goal of these studies is to learn more about biology 
and disease pathophysiology, which in turn can lead to new 
treatment paradigms.

In summary, the development of novel biomarker tests 
for diagnosis, risk prediction, and prognosis is an exciting 
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application of studies of the expressed genome. There are 
well-established methods for evaluating such novel bio-
markers that can and should be applied. This is true regard-
less of whether the biomarker test is a point-of-care test used 
in the acute setting or whether it is a test that is used in the 
primary care setting or even sent to the patient’s home to be 
used in long-term, preventive care. These prediction methods 
are often underused or misused,7 and increased educational 
efforts addressing the application of these methods would 
benefit the omics field as a whole. In future studies, it will be 
important to consider the clinical question already in the study 
design rather than to get distracted by fancy high-throughput 
methods, to think about how a novel biomarker can add to 
the existing clinical paradigm, and to emphasize unmet needs, 
for example, in intermediate-risk populations in whom a bio-
marker can function as a tiebreaker test.

Transcriptomics
The generation of RNA from DNA is the first step in the transi-
tion from the inherited to the expressed genome. Quantifying 
the levels of RNA molecules for all or a subset of the ≈20 000 
coding genes in the genome, as well as microRNAs and long 
intervening noncoding RNAs, is referred to as transcriptomics 
or gene expression profiling. For analysis of a limited num-
ber of gene transcripts, some version of the polymerase chain 
reaction (PCR) is frequently used such as real-time or quanti-
tative PCR. For increased sensitivity to detect rare transcripts, 
“digital” PCR and single-molecule imaging techniques have 
emerged. For analysis of a larger number of transcripts such 
as all known transcripts in the genome, microarray technol-
ogy quickly became the platform of choice. Microarrays use 
DNA oligomers that are immobilized onto a glass slide; the 
oligomers are chosen to specifically match sequences in the 
desired genes. The expression level of a gene in a sample is 
quantified by measuring the amount of RNA that binds to a 
matching oligomer through Watson-Crick base pairing. Just 
as next-generation sequencing has revolutionized the analy-
sis of the inherited genome, next-generation sequencing has 
recently replaced microarrays as the preferred platform for 
gene expression analysis by allowing an unbiased approach to 
transcript discovery and quantification at a comparable cost.

Although the expressed genome ultimately results from 
multiple subsequent processes after the transcription of DNA 
into RNA such as translation, variation in the levels of RNA 
(specifically mRNA) transcripts can explain a large proportion 
of the variation in protein levels.15 Because of the dynamic 
nature of transcriptional regulation, RNA levels represent not 
only features encoded in the genome (described above) but 
also the influence of the environment (eg, air pollution, diet, 
medications). Because genes are often transcribed in a coor-
dinated fashion, one can infer pathways that are associated 
with a phenotype of interest by finding concordance of statisti-
cal associations across a large number of genes. Coordinated 
gene expression often leads to a statistical advantage in bio-
informatics analyses because the expression levels of dozens 
to hundreds of genes are correlated with each other, therefore 
reducing the dimensionality (ie, complexity) of a gene expres-
sion data set.16 This feature, coupled with the fact that only a 
fraction of the ≈20 000 genes in the genome are expressed in a 

given tissue, further narrows the statistical haystack in which 
to look for associations. Finally, the ability to measure RNA 
levels in a commercial diagnostic testing laboratory has been 
well established. For example, measuring RNA levels of hepa-
titis C virus or HIV viral loads has been standard diagnostic 
testing available to physicians for decades.

Thus, a multitude of reasons have motivated investigators 
to use gene expression profiling as the starting point for bio-
marker discovery and identification of novel disease mecha-
nisms in the cardiovascular system. The focus of this section 
is the analysis of mRNAs derived from blood and myocar-
dium in the development, diagnosis, prognosis, and treatment 
of CAD and its sequelae.

It is well known that CAD is often heralded by traditional 
risk factors such as smoking, diabetes mellitus, blood lipid 
levels, and hypertension. However, what is less well under-
stood is how these risk factors lead to CAD. By studying 
associations with specific risk factors, investigators aim to 
highlight novel mechanisms underlying CAD. The rationale 
for these studies, typically performed with blood, is that risk 
factors create a proatherosclerotic milieu that is captured in 
the RNA profiles of circulating cells. For example, a series 
of studies using microarray analysis of either unfractionated 
peripheral blood or purified lymphocytes across the spectrum 
of tobacco smoke exposure compared with never smokers 
have identified several genes representing inflammatory path-
ways that may contribute to CAD.17–19 Those with secondhand 
smoke exposure could not be distinguished from primary 
smokers,17 and neither could recent smokers (quit <2 months 
previously) be separated from current smokers.19 However, 
former smokers (quit >2 months previously) most closely 
resembled never smokers from the perspective of their gene 
expression in peripheral blood.19 These relationships suggest 
a dose-response relationship, reinforce the dangers of second-
hand smoke exposure, and confirm that smoking cessation is 
associated with reversible effects on biological pathways that 
may underlie CAD.

Diabetes mellitus is a powerful magnifier of CAD risk. 
Analysis of hepatic and circulating peripheral blood mono-
nuclear cells with microarray techniques identified the c-Jun 
N-terminal kinase and oxidative phosphorylation pathways 
as being dysregulated in patients with type 2 diabetes mel-
litus.20,21 As further evidence that hyperglycemia drives these 
changes, when patients with diabetes mellitus were evaluated 
before and after achieving glycemic control, there was nor-
malization toward the nondiabetic state in c-Jun N-terminal 
kinase pathway genes, reinforcing the potential benefits of 
euglycemia in patients with diabetes mellitus.20 In terms of 
less conventional CAD risk factors, body mass index and the 
metabolic syndrome are associated with the inflammatory 
nuclear factor-κB pathway22 and innate immune response,23 
respectively. Thus, through gene expression analysis of risk 
factors for CAD, several pathways have emerged related to 
inflammation, a well-known driver of atherosclerosis.24

In contrast to investigations focused on risk factors, oth-
ers have sought to directly study CAD in an attempt to iden-
tify novel mechanisms and diagnostic biomarkers. Initial 
attempts compared patients with CAD with healthy control 
subjects without independent validation of their findings, 

D
ow

nloaded from
 http://ahajournals.org by on A

pril 10, 2019



e9    Musunuru et al    Expressed Genome in Cardiovascular Diseases and Stroke

thus limiting their conclusions.25,26 The largest body of work 
around gene expression profiling for CAD is related to the 
development of a clinically available diagnostic test for CAD 
(Corus CAD). Because the focus of these studies was the 
development of a novel diagnostic test, the choice of patient 
populations, study design, and RNA transcripts was driven 
by the need to build a predictive model for a specific diag-
nostic test rather disease pathobiology. Nevertheless, the 
culmination of this work with microarray analysis led to the 
discovery of genes associated with the presence and extent 
of CAD.27 The final algorithm uses age, sex, and the expres-
sion levels of 23 genes in peripheral blood RNA as assessed 
by PCR to classify obstructive CAD (ie, ≥50% stenosis in at 
least 1 major coronary artery).28 The diagnostic accuracy of 
the algorithm was demonstrated in prospective independent 
cohorts with a sensitivity of ≈85% and a negative predictive 
value of ≈85% in diagnosing CAD.29,30 Although the algo-
rithm applies only to patients without diabetes mellitus and, 
unlike traditional stress testing, does not provide prognostic 
information, it provides a validated noninvasive laboratory 
test to diagnose obstructive CAD.

Most gene expression studies of CAD have focused on 
patients with stable CAD. However, patients with acute coro-
nary syndromes such as MI likely exhibit unique biological 
processes that drive the transition from stable to unstable 
CAD. Platelets are well known to contribute to the develop-
ment of MI and are also known to contain a large amount of 
functional RNA,31–33 despite lacking nuclei. Among patients 
presenting with MI, platelet gene expression analyses have 
identified genes and pathways linked to the adaptive immune 
response.34,35 Similar studies using peripheral blood mononu-
clear cells have also identified genes related to adaptive immu-
nity as being associated with MI.36 Of note, most studies of the 
expressed genome in MI cannot determine whether changes 
in gene expression are the cause or the result of MI. However, 
platelets lack nuclei, and their mRNA levels are established at 
the time of megakaryopoiesis. Thus, it may be that pathologi-
cal changes in platelet RNA can precede MI by at least several 
weeks, allowing the possibility of monitoring patients at risk 
of near-future MI.

Antiplatelet therapy with aspirin is a cornerstone of 
the treatment and prevention of MI. Variability in platelet 
response to aspirin has been well described and includes 
mechanisms beyond the inability of aspirin to inhibit platelet 
cyclooxygenase-1. Peripheral blood gene expression profiling 
has identified a 60-gene signature that is of platelet origin and 
both correlated with platelet function in response to aspirin 
and associated with cardiovascular events in patients with 
CAD treated with aspirin.37 In a unique approach, investiga-
tors have used lymphoblastic cell lines from patients given 
simvastatin for ex vivo gene expression profiling of lympho-
blastic cell lines before and after exposure to simvastatin. The 
goal of these experiments was to link genetic variation, gene 
expression profiles from ex vivo drug exposure, and in vivo 
drug responses to identify novel mechanisms of simvastatin 
response. These ex vivo experiments have uncovered novel 
pathways that underlie variation in low-density lipoprotein 
cholesterol lowering38 and novel genetic variants associated 
with musculoskeletal side effects in response to simvastatin.39 

Gene expression profiles for other commonly used cardiovas-
cular medications have not yet been developed. However, sev-
eral medications (eg, clopidogrel, metoprolol, warfarin) are 
metabolized by cytochrome P450 enzymes that are known to 
be highly variable in activity among individuals. Hepatic gene 
expression profiling correlates with cytochrome P450 activity, 
and one study has linked peripheral blood cytochrome P450 
gene expression with hepatic cytochrome P450 activity,40 thus 
laying the foundation for a novel set of biomarkers to inform 
drug dosing and selection.

The progression from MI to systolic heart failure is vari-
able and is driven by factors related to the underlying event 
(ie, infarct size, timeliness of reperfusion, and concomitant 
medical therapy), as well as complex biological processes 
(ie, inflammation, regulation of extracellular matrix turnover, 
fibrosis, cell death, and angiogenesis). To better understand 
these processes, peripheral blood gene expression analy-
sis with microarrays at the time of acute events was used to 
discover and validate TGFBR1 as a promising candidate.41 
Expression of TGFBR1 in peripheral blood could predict a 
reduced ejection fraction after MI independently of markers 
of infarct size (eg, troponin T and creatine kinase). TGFBR1 
expression in this study was likely measured from circulat-
ing monocytes/macrophages, and the transforming growth 
factor-β pathway is well known to influence the switch from 
an inflammatory response to a fibrotic response after MI.42

Ischemic cardiomyopathy is a common consequence of 
CAD and MI and can lead to sudden cardiac death (SCD) 
caused by ventricular arrhythmias. A reduced ejection fraction 
is a well-known risk factor for SCD and is the key criterion for 
primary prevention with implantable cardioverter-defibrillator 
(ICD) therapy. However, the majority of patients who receive 
an ICD never need it, and many more who do not qualify 
for an ICD go on to experience SCD.43 There is therefore a 
need for improved tools to more precisely identify patients 
with ischemic cardiomyopathy who are at risk for SCD. One 
approach has been to study the underlying electrophysiologi-
cal properties of the myocardium in heart failure. The SCN5A 
gene encodes the primary sodium channel in myocardium. 
Well-described SCN5A genetic variants that reduce the func-
tion of this channel and thus reduce the sodium current lead to 
an increased risk for SCD in Brugada syndrome.44 Microarray 
analysis of normal versus failing human myocardium identi-
fied upregulation in specific splicing factors in heart failure 
that led to increased levels of a truncated, nonfunctional ver-
sion of SCN5A that reduces sodium current.45 Interestingly, 
aberrant SCN5A splicing is also observed in peripheral blood 
cells from patients with heart failure and is tightly corre-
lated with myocardial SCN5A mRNA levels, thus providing 
a peripheral blood “window” into the electric properties of 
the heart.46 Peripheral blood SCN5A expression profiling with 
PCR predicted appropriate ICD shock therapy in patients with 
heart failure with high accuracy.46 These early data lay the 
foundation for a novel gene expression–based biomarker to 
help risk-stratify patients for ICD therapy.

A small minority of patients with ischemic cardiomy-
opathy fail best medical therapy and progress to end-stage 
heart failure requiring left ventricular assist device therapy. 
A subset of patients who receive left ventricular assist device 
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therapy recover left ventricular function (reverse remodeling) 
to the point where the left ventricular assist device can be 
explanted.47 This process has provided a unique opportunity to 
access myocardial tissue for gene expression analysis before 
and after reverse remodeling to identify mechanisms that 
are associated with improvement in left ventricular function 
with mechanical unloading. The reverse remodeling process 
appears to be associated with genes in the integrin pathway,48 
arginine metabolism,49 and Wnt signaling,50 whereas failure to 
recover function was associated with profibrotic genes such 
as TGFB1.51

For patients with end-stage heart failure for whom left ven-
tricular assist device support is not indicated or required, car-
diac transplantation is sometimes an option. Transplantation 
significantly improves heart failure symptoms but adds the 
risks of rejection (acute and chronic), immunosuppressive 
therapy, and opportunistic infections. The gold standard 
for surveillance of cardiac allograft rejection is an invasive, 
endocardial biopsy. From myocardial biopsies and peripheral 
blood for microarray analysis, diagnostic signatures for acute 
rejection52,53 and chronic rejection54 have been identified. The 
latter has been developed into a clinically available diagnos-
tic test (AlloMap) using RNA from peripheral blood, PCR, 
and a validated algorithm that identifies patients with chronic 
rejection. Compared with a strategy of routine biopsies, use 
of the AlloMap test was noninferior with similar rejection, 
graft dysfunction, death, and retransplantation rates, similar 
adverse outcomes, and fewer biopsies.55

At every step in the natural history of CAD, from risk 
factors to diagnosis in symptomatic patients to many of the 
sequelae, including MI, heart failure, arrhythmia, and trans-
plantation, gene expression profiling of blood and myocardial 
tissue has identified novel biological processes underlying 
these disorders and yielded novel diagnostic tests. Although 
informative, gene expression profiling is just one entry point 
into a continuum of experiments also involving genetics, pro-
teomics, metabolomics, etc, to further refine disease mecha-
nisms. Peripheral blood gene expression profiling lends itself 
to diagnostic testing such as Corus CAD and AlloMap but is 
far removed from the tissues of interest in CAD such as endo-
thelium, vasculature, and myocardium. Therefore, there are 
inherent limitations in blood-based signatures of diseases, and 
direct tissue profiling will likely be required. Finally, although 
the vast majority of transcriptomics studies have focused on 
mRNAs, a suite of noncoding RNAs expressed in blood and 
other key tissues contribute to disease and remain to be charac-
terized. In particular, unbiased analyses of microRNA profiles 
in CAD and other cardiovascular diseases are now underway, 
although to date microRNA studies have been largely limited 
to the investigation of the relationships of individual microR-
NAs with disease, as reviewed elsewhere.56,57

As described in previous sections, translating transcrip-
tomic discoveries from research settings into the clinical 
environment is a nontrivial task that goes beyond independent 
validation. Successful translation additionally involves techni-
cal factors such as sample source, handling, and processing; 
statistical issues concerning the transparency of model devel-
opment and validation; prospective clinical trial issues con-
cerning clinical utility and performance; and regulatory issues 

around Clinical Laboratory Improvement Amendments/the 
US Food and Drug Administration. The National Cancer 
Institute’s set of 30 criteria to evaluate potential omics-based 
predictors for clinical use (Table) should be considered in 
judging whether a particular test is appropriate for patient 
care. The 2 transcriptomic tests discussed in this section, 
Corus CAD and AlloMap, have met many of these criteria.

The Corus CAD test was based on initial discovery using 
microarrays and independent validation using reverse-tran-
scriptase PCR of genes that were identified for their collective 
ability to identify patients with or without obstructive CAD.27 
This initial discovery work led to the development of pre-
defined technical and quality control parameters required for 
a diagnostic test using peripheral blood reverse-transcriptase 
PCR58 and a statistical model using age, sex, and the expres-
sion of these 23 genes to identify nondiabetic patients with a 
high likelihood of obstructive CAD.28 The performance of this 
retrospectively developed model was prospectively assessed 
in 2 studies29,30 in symptomatic patients with suspected CAD. 
The clinical utility of the Corus CAD test has also been pro-
spectively assessed59–62 with respect to the initial diagnostic 
workup of patients with suspected CAD. As a result of this 
work, the Corus CAD test is a clinically available diagnos-
tic test that has been evaluated, has been deemed to be valid 
and useful, and accordingly is covered by many insurers. 
The AlloMap test has similarly been rigorously assessed in 
terms of developing and validating a statistical model with 
peripheral blood gene expression used to diagnose cardiac 
rejection.54 The use of AlloMap in the management of cardiac 
rejection compared with routine endomyocardial biopsy was 
evaluated and validated in a prospective randomized clinical 
trial.55 As a result, the US Food and Drug Administration has 
approved AlloMap as a diagnostic test to aid in the detection 
of chronic cardiac graft rejection.

Epigenomics
Broadly speaking, epigenetics is the study of external fac-
tors besides DNA sequence variation that influence the pro-
cess of gene transcription. In principle, this can encompass 
a diverse set of mechanisms ranging from DNA methylation 
to histone modifications, transcription factors, microRNAs, 
and long intervening noncoding RNAs. The emergence of 
straightforward techniques for genome-scale analysis of DNA 
methylation and, to a lesser extent, histone modifications has 
resulted in the discipline of epigenomics, that is, the study of 
the full collection of these 2 types of biochemical alterations 
to the genome. Most of the disease-oriented efforts to date 
have focused on DNA methylation. These alterations can be 
dynamic in response to environmental influences during one’s 
lifetime rather than solely being inherited from one’s parents, 
as is typically the case with DNA sequence variation. Thus, 
epigenomics offers an important window through which one 
can observe how the expressed genome influences disease 
pathophysiology. However, unlike genetic variation, which is 
static and impervious to reverse causation, when epigenetic 
changes are observed to be associated with disease, it is dif-
ficult to know whether those particular changes are driving the 
disease process or the changes are a secondary consequence of 
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the disease process. In either case, knowledge of the epigen-
etic changes may have value if they provide biomarkers with 
which to predict the incidence or severity of the disease.

As a result of technical limitations, early studies focused 
on discerning whether there were associations between non-
specific, global changes in methylation across the genome 
and CAD.63 One study found that genomic DNA in periph-
eral blood cells from patients with CAD was generally hyper-
methylated compared with control individuals.64 In contrast, 
another study focused on methylation of noncoding, repetitive 
long interspersed nucleotide element-1 elements, which occur 
with high frequency throughout the genome and are normally 
highly methylated. This study found that hypomethylation, 
not hypermethylation, of these elements in genomic DNA 
in peripheral blood cells was associated with prevalent CAD 
and stroke, incident CAD and stroke, and increased CAD and 
stroke mortality.65 However, another study focused on meth-
ylation of noncoding Alu and satellite 2 repetitive elements 
throughout the genome and found that men, but not women, 
with CAD, hypertension, or diabetes mellitus displayed 
increased Alu and satellite 2 methylation in peripheral blood 
cells.66 Of note, these 3 studies were performed in 3 different 
ethnic populations.

The emergence of methods to interrogate specific sites in 
the genome for methylation status has now made it possible to 
assess candidate genes and to perform unbiased epigenome-
wide association studies, in analogy to genome-wide associa-
tion studies performed with DNA variants. For example, an 
epigenomic array that analyzed methylation at 27 578 sites in 
>14 000 gene promoter regions in genomic DNA in peripheral 
blood cells identified a locus in the F2RL3 gene for which 
hypomethylation was strongly associated with tobacco smok-
ing.67 Once identified, the F2RL3 locus served as the basis 
of candidate gene studies that found that hypomethylation 
of the locus was strongly associated with mortality among 
patients with stable CAD68 and was associated with cardio-
vascular mortality in a population cohort, particularly among 
men.69 In another example, an epigenome-wide association 
study performed in peripheral blood cells from patients with 
familial hypercholesterolemia identified the TNNT1 gene 
locus as a site at which decreased methylation was associated 
with decreased high-density lipoprotein cholesterol levels.70 
A follow-up candidate gene study with TNNT1 found that in 
individuals without familial hypercholesterolemia, increased 
methylation was associated with CAD.71 In other candidate 
gene studies, increased methylation at CDKN2B was associ-
ated with CAD,72 increased methylation at PLA2G7 was asso-
ciated with CAD among women,73 and increased methylation 
at INS and GNASAS, loci with a methylation status thought 
to be influenced by the prenatal environment, was associated 
with increased incidence of MI among women.74 Although all 
of these findings are intriguing, for the most part, they have 
emerged from small sample sizes and need to be replicated in 
independent cohorts to establish their validity.

There has been a dearth of epigenome-wide association 
studies performed directly for CAD, as opposed to CAD 
risk factors, but one such study identified a number of can-
didate hypermethylated loci in peripheral blood cells from 
patients with CAD that await replication.75 A greater number 

of epigenome-wide association studies have been performed 
directly for cardiomyopathy using cardiac tissues from patients 
with end-stage disease and healthy individuals. Among the 
gene loci that have been reported to have altered methylation 
patterns in advanced heart failure are DUX4, LY75, ERBB3, 
HOXB13, and ADORA2A.76,77 The DUX4 locus is particularly 
notable because it was also found to harbor changes in histone 
modifications,76 a different type of epigenetic change that has 
not been well studied in cardiovascular disorders to date.

There is great interest in expanding the role of epigenom-
ics to better understand the role of epigenetic changes in dis-
ease pathophysiology. Another incentive is to discover better 
disease biomarkers that can be used to more accurately predict 
disease risk, morbidity, and mortality and ultimately to guide 
treatment in individuals. To these ends, a number of interna-
tional collaborative projects have been undertaken, including 
the Human Epigenome Project and the International Human 
Epigenome Consortium. These collaborations have worked to 
develop comprehensive catalogs of epigenetic markers within 
the human genome in a large variety of tissue types.

Proteomics
Proteomics refers to the determination of the protein comple-
ment of a tissue, cell, or fluid compartment such as serum or 
urine. The term proteome was proposed almost 2 decades 
ago,78 at a time when the primary technologies used to pro-
file the protein complement were considerably less advanced. 
Analysis was often limited to gel separation in 1 or 2 dimen-
sions, followed by identifying proteins by gel extraction, deter-
mining partial amino acid composition of individual proteins, 
and matching them to nucleotide sequence databases. The 
field has advanced considerably in the past 2 decades by the 
application of newer technologies and applications of protein 
separation and mass spectrometry (MS)–based techniques to 
separate complex protein mixtures; to characterize proteins in 
greater depth, including a variety of posttranslational modifi-
cations; to use MS technology with greater sensitivity to detect 
low-abundance peptides; to develop new methods to accu-
rately quantify proteins in a complex mixture and differences 
in abundance between sample sets; and to develop new bioin-
formatics tools to accurately categorize and compare highly 
complex data sets. Even more recently, antibody-based tech-
niques are being applied to proteomics, potentially improving 
on the sensitivity of MS-based techniques.79 It is notable that 
the use of serum protein biomarkers of cardiovascular dis-
eases in a directed way preceded the development of newer 
technologies. Nevertheless, the advances made in proteomics 
technologies and strategies are poised to directly affect the 
study of cardiovascular diseases and stroke, as outlined in a 
recent American Heart Association scientific statement.80 This 
section briefly discusses current protein biomarkers that were 
developed primarily in a hypothesis-directed fashion, as well 
as newer discovery-based approaches that may be transforma-
tive by identifying novel biomarkers in an unbiased way.

There are many challenges in the application of pro-
teomics to advance our understanding of cardiovascular dis-
eases. In cancer proteomics, diseased tissue may be directly 
available via its surgical removal at diagnosis. In contrast, 
availability of myocardial tissue or peripheral or cerebral 
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vascular tissue is often limited to retrieval either postmortem 
or in end-stage disease via myocardial biopsy, placement of 
mechanical cardiac support, heart transplantation, or other 
surgeries. Normal human cardiovascular tissue, which can 
serve as the baseline for comparison, also has limited avail-
ability. Therefore, most proteomics work to develop biomark-
ers in human cardiovascular diseases is limited to the blood 
compartment, which includes serum, plasma, and circulating 
cells. Although challenging, when proteomics is combined 
with increasingly sophisticated imaging strategies, there is 
the opportunity to correlate cardiovascular pathology with an 
altered proteome in blood.

Established cohorts such as the Framingham Heart 
Study, the Jackson Heart Study, and the Multi-Ethnic Study 
of Atherosclerosis, as well as numerous clinical trial tissue 
repositories, also offer opportunities for correlations with out-
comes. Ideally, newly developed potential biomarkers must be 
determined from carefully collected and stored biospecimens 
and validated before correlation with disease states. Some 
of the challenges of this workflow have been noted in recent 
consortium and meeting statements.81,82 Biomarkers should be 
validated in >1 well-characterized sample set before applica-
tion in a large-scale study. An important facet of assay devel-
opment is attention to the use of appropriate control samples.

Characterization of protein biomarkers of cardiac injury 
in ischemic disease began well before the development of the 
field of proteomics and has transformed clinical cardiology 
over the past few decades. The history of the development 
of specific assays, including the creatine kinase assay and 
troponin assays, has been described by Jack Ladenson,83 the 
clinical chemist who developed these assays. The approach 
used classic hypothesis-directed studies, with the understand-
ing that specificity for myocardial tissue and higher sensitiv-
ity were desirable. The focus on troponin I and T assays was 
driven by recognition of their myocardial specificity. Troponin 
assays informed the definition of MI, and their improved sen-
sitivity has led to use of these assays to detect possible myo-
carditis and heart failure. It is important to note that troponin 
levels may also be elevated in the blood of patients with a 
wide variety of other medical disorders.84 Although these 
elevations reflect myocardial damage that is associated with 
poorer prognosis, the underlying mechanism for myonecrosis 
is not believed to be ischemic and varies by illness. It has also 
been recognized that even when MI has been excluded among 
patients who present to the emergency room with chest pain, 
low levels of troponin in blood, as detected by high-sensitivity 
assays, predict higher all-cause mortality and cardiac hospi-
talization in the months ahead.84 Although immunoassays are 
the method used in current troponin assays, extension to even 
more sensitive MS technologies may emerge in clinical prac-
tice. This could provide the opportunity to measure not only 
troponin levels but also protein modifications of sarcomere 
proteins that may correlate with disease.85,86

Numerous other clinical assays of proteins are useful in 
the management or assessment of heart failure, inflammation 
related to heart disease risk, or cardiac fibrosis. These are well 
described in excellent review articles.87,88 There is interest in 
further developing biomarkers for vascular disease. For exam-
ple, transforming growth factor-β isoforms and C-reactive 

protein have recently been shown to be potentially useful 
markers in vascular Ehlers-Danlos syndrome.89 Finally, bio-
markers of brain injury from stroke are of interest and may be 
useful in clinical settings to assess ischemic and other forms 
of brain injury and to stratify treatments.

Despite much progress by directed research and assay 
development for biomarkers of heart disease, proteomics is 
likely to be a useful conduit for further biomarker develop-
ment. It is worthwhile at this juncture to review technologies 
that will likely drive non–hypothesis-based opportunities for 
progress in developing new biomarkers or more sensitive 
and accurate detection of low-abundance peptides and pro-
teins in body compartments, particularly blood. The recent 
American Heart Association scientific statement on cardio-
vascular proteomics provides an in-depth review of emerging 
technologies.80

The technology that has driven recent advances in pro-
teomics is MS. A mass spectrometer is an instrument that 
ionizes, separates by mass-to-charge ratio, generally by 
acceleration and deflection by electric or magnetic fields, and 
detects the ionized peptides or chemicals. From this informa-
tion, the mass of a peptide can be used to infer its identity or 
in tandem MS (MS/MS or MS2) can reveal its precise amino 
acid sequence and posttranslational modifications. The out-
put in terms of a spectrum, which displays peaks with rela-
tive abundance versus mass-to-charge ratio, can be analyzed 
against databases to determine the match of a peptide or set of 
peptides to the protein from which it is derived.

Key steps in applying MS analysis of tissue or body fluids 
include proper sample collection and storage and separation 
of complex protein mixtures. Sample preparation involves 
solubilizing tissue samples. In the case of body fluids, this 
may involve initial separation steps, for example, to pre-
pare serum or plasma from whole blood. In addition, serum/
plasma contains a high abundance of albumin resulting in a 
very high dynamic range of protein concentrations that limit 
assessment of low-abundance proteins. Thus, many proteomic 
approaches used to analyze serum/plasma involve removing 
albumin. Once the initial preparation is complete, the protein 
mixture is typically subject to enzyme digestion (eg, with 
trypsin) to generate peptides. The peptides are separated by 
physical means such as capillary electrophoresis or liquid 
chromatography before injection into the mass spectrometer. 
After analysis of various sample fractions by MS, the result-
ing data sets are quite complex. Database searches, inspection 
of primary spectra, and further analysis are necessary before 
comparisons between samples are undertaken. Refinements 
in the separation technology and increased sensitivity of 
MS instruments have allowed highly accurate quantification 
of proteins in complex mixtures with labeled (mass tags) or 
unlabeled approaches to compare the quantity of peptides/pro-
teins between groups. The various methodologies for analysis 
and quantification in proteomics are discussed in detail in the 
recent American Heart Association scientific statement.80

There are numerous barriers to the widespread applica-
tion of proteomics to the development of disease biomarkers, 
including the complexity of use of MS-based technologies and 
each step of the investigative process from sample collection, 
storage, and preparation to separation of complex mixtures 
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and MS/MS approaches to final data annotation and analysis. 
Some of these complexities and pitfalls were illustrated by 
the outcomes of the Human Proteome Organizations human 
plasma proteome project, which was a joint effort of multi-
ple laboratories using different approaches.90,91 An additional 
limitation to clinical application of proteomic approaches is 
that the instruments are very expensive, are challenging to 
maintain, and require technical staff with a very high level of 
expertise. Furthermore, the data are challenging to interpret 
and analyze in group comparisons. In general, the approaches 
do not currently produce results in a time frame that would 
allow them to inform clinical care. Finally, although strides 
have been made to develop methodologies for absolute quan-
tification in comparisons between sample sets, with the use of 
both labeled and unlabeled approaches, this remains an ongo-
ing challenge.

The translation of a significant and highly accurate bio-
marker discovered by proteomics to clinical care still requires 
additional validation in large population studies, and this 
might involve transition to a validated immunoassay. Two 
recent articles from conferences of experts point out the 
requirements for translation of biomarkers discovered with 
proteomic approaches to useful clinical assays.82,92 The recent 
publication of draft maps and databases of the human pro-
teome may accelerate progress in proteomic application to 
clinical medicine.93,94

Despite these challenges, application of unbiased pro-
teomics approaches to characterize new biomarkers offers 
promise in cardiovascular disease. For example, proteomic 
approaches may help to identify biomarkers to fill current gaps 
such as the diagnosis of subclinical or chronic brain injury 
and ischemia, as well as differentiation of distinct forms of 
stroke. They could enable more accurate prediction of risk 
for acute MI or stroke before the event. For example, Prentice 
and colleagues95 used an unbiased MS-based approach with 
enrollment samples from the Women’s Health Initiative 
Observational Study to screen for protein biomarkers for risk 
of future coronary heart disease and risk of future stroke; 
they identified β-2 microglobulin and insulin-like growth 
factor–binding protein 4, respectively. Similarly, Yin and col-
leagues96 used an MS-based approach with samples from the 
Framingham Heart Study to identify single and combinations 
of novel protein biomarkers associated with future MI or ath-
erosclerotic cardiovascular disease.

The assessment of risk for SCD to more precisely stratify 
use of ICDs or even to identify people early enough to avert 
the event is a substantial unmet need that proteomics may 
address. Although some tests are available to monitor patients 
with heart transplantation for rejection, intermittent myocar-
dial biopsy remains the gold standard. The development of 
new highly sensitive and specific blood-based assays would 
be a major advance in this field. Finally, there are no avail-
able biomarkers to assess risk for aortic dissection pulmonary 
hypertension severity and response to therapy or that are spe-
cific for pulmonary embolism.

Assays developed in an unbiased fashion also have the 
particular advantage that they may uncover novel mecha-
nisms leading to new or rationally prescribed therapeu-
tics. Proteins and their posttranslational modifications are 

the ultimate drivers of function, and from this perspective, 
advances in proteomics are essential to the development of 
precision medicine.

Metabolomics
Metabolomics, or metabolomic profiling, refers to a compre-
hensive analysis of low-molecular-weight (typically <1500 
Da) molecules called metabolites. These molecules either are 
endogenous products resulting from chemical processes in 
the body (ie, metabolism) or come from exogenous sources 
(eg, diet, drugs, xenobiotics, or gut-host cometabolism). The 
metabolome represents the full collection of metabolites in a 
biological entity such as a cell, tissue, organ, or organism. In 
humans, metabolites have often been measured in blood or 
urine, but they can also be detected in saliva, breath, or any of 
the ≈500 different histological cell types in the human body.97

Metabolomics provides a biochemical fingerprint of an 
individual at a given point in time. In principle, this should 
give information about underlying physiological and patho-
logical states that can be linked to disease presence, severity, 
and prognosis. Recent improvements in analytical technolo-
gies and advances in bioinformatics methods enable metabo-
lomic profiling in hundreds or even thousands of individuals 
in a reasonably short time frame, allowing the broader imple-
mentation of this methodology in epidemiological and clinical 
research. This emerging technology provides unprecedented 
opportunities to obtain objective measures of biochemical 
processes reflecting environmental and other exposures in 
humans. Hence, there has been substantial recent interest in 
metabolomics in the cardiovascular field.98

The 2 main technologies used for metabolomic profiling 
are nuclear magnetic resonance (NMR) spectroscopy and 
MS-based methods. NMR spectroscopy uses the magnetic 
properties of certain atomic nuclei, and it provides unique 
and well-resolved spectra that are highly predictable for small 
molecules such as metabolites. As described in the previous 
section, MS relies on ionization of the sample and subsequent 
measurement of the mass-to-charge ratio, in which the spectra 
show relative abundance of the detected ions as a function of 
mass to charge, allowing identification of unique molecules in 
the sample. Typically, MS-based metabolomics also involves 
an initial step in which molecules in the sample are separated 
by certain chemical properties (eg, charge, size, or polarity) 
with capillary electrophoresis or, more often, chromatography. 
In chromatography, the mobile phase can be gas (gas chro-
matography) or liquid (liquid chromatography).97 Advantages 
of NMR spectroscopy include high reproducibility, minimal 
sample preparation, no sample destruction, and a relatively 
low cost per sample. A major disadvantage is a detection limit 
in the submicromolar range, meaning that fewer metabolites 
can be detected than with MS-based methods. The MS-based 
methods, on the other hand, are more sensitive, allowing 
detection of a larger number of metabolites. However, they 
are more susceptible to variability, leading to lower reproduc-
ibility and higher platform dependency. In addition, the per-
sample cost is higher, and the bioinformatics analyses of the 
generated data are more complex.

Metabolomic profiling can be performed in a targeted or 
untargeted manner. The targeted approach aims at accurately 
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measuring a specific subset of metabolites, typically focusing 
on a certain pathway or group of molecules of interest. The 
advantages of this approach include that the use of internal 
standards allows quantitative interpretation and that the opti-
mized sample preparation leads to fewer analytical artifacts, 
improving downstream analysis. The untargeted approach 
aims at a comprehensive analysis of all measurable analytes 
in the sample and unknown compounds. This approach allows 
novel target discovery and avoids restricting the study to a 
certain group of metabolites, but it is associated with more 
challenges in the chemical analyses, in downstream bioinfor-
matics, and especially in compound identification.99

Several early studies applying metabolomics in cardio-
vascular disease research used NMR spectroscopy in small 
samples of patients being investigated with coronary angiog-
raphy for suspected coronary heart disease. The first of these 
studies reported very promising results; it achieved sensitivi-
ties and specificities >90% for correctly classifying patients 
with chest pain as having or not having significant coronary 
stenosis.100 However, follow-up studies demonstrated weak 
discrimination for detecting angiography-defined CAD in a 
patient sample similar to that of the first study101 or in high-
risk diabetic patients.102 In one of the first efforts applying 
MS-based metabolomics to study cardiovascular diseases, 6 
metabolites from the citric acid cycle pathway were found to 
change significantly more among patients who demonstrated 
inducible ischemia during an exercise test than among those 
who did not have signs of ischemia.103

One of the larger efforts to use metabolomic profiling to 
predict cardiovascular diseases was a case-control study of 
subjects from the Catheterization Genetics biorepository in 
which 69 metabolites were assessed in 314 cases with CAD 
and 314 age- and sex-matched controls free of disease.104 
Using principal components analysis, the investigators 
showed that branched-chain amino acids (primarily leucine 
and isoleucine) and urea cycle metabolites were indepen-
dently associated with the presence of CAD. In a separate 
analysis, they related metabolites to adverse events (death or 
MI; n=63) during 2 years of follow-up and found dicarbox-
ylacylcarnitines to be associated with subsequent events. In 
a larger follow-up study of 2023 patients in the MURDOCK 
(Measurement to Understand Reclassification of Disease of 
Cabarrus/Kannapolis) Horizon 1 Cardiovascular Disease 
Study, the same 69 metabolites were analyzed as predictors 
for death (n=232) and a composite end point (death or MI; 
n=294) during a median follow-up of 3.1 years.105 The stron-
gest metabolite predictors of death or MI among those indi-
viduals who had undergone a cardiac catheterization (≈61% 
had at least 1-vessel disease) were short-chain and long-chain 
dicarboxylacylcarnitines and fatty acids. The investigators 
also demonstrated that the metabolomic profiles added incre-
mental discriminative capacity beyond standard clinical vari-
ables in individuals with intermediate risk.

In 2011, investigators from the Framingham Heart Study 
and the Malmö Diet and Cancer study used untargeted liq-
uid chromatography–MS to study metabolites associated with 
diabetes mellitus risk. They reported that 5 branched-chain 
and aromatic amino acids (isoleucine, leucine, valine, tyro-
sine, and phenylalanine) were highly significantly associated 

with future type 2 diabetes mellitus.106 The 3 amino acids most 
strongly associated with diabetes mellitus (isoleucine, tyro-
sine, and phenylalanine) were subsequently shown to predict 
incident atherosclerotic cardiovascular disease (MI or stroke), 
carotid intima-media thickness and plaques, and exercise-
induced myocardial ischemia.107 These findings highlight a 
potential key role of amino acid metabolism in early diabe-
tes mellitus development, and they point to a potential link 
between type 2 diabetes mellitus and susceptibility to athero-
sclerotic cardiovascular disease.

Recently, 4 studies applying metabolomic profiling in 
individuals from the general population to study risk for 
future atherosclerotic cardiovascular disease were published. 
Vaarhorst and colleagues108 used NMR spectroscopy to study 
associations of 36 metabolites with incident coronary heart 
disease (n=79). They reported that a score of 13 metabolites 
representing different biological pathways (selected with 
the use of least absolute shrinkage and selection operator 
regression) was associated with disease incidence but did 
not improve risk prediction beyond traditional cardiovascular 
risk factors. Stegemann and colleagues109 profiled 685 plasma 
samples (number of incident events=90) by shotgun lipido-
mics using MS-based methods to identify 135 lipid species. 
Triacylglycerols and cholesterol esters with a low carbon 
number and double-bond content were the strongest predic-
tors of atherosclerotic cardiovascular disease (a composite 
end point including incident fatal and nonfatal MI, ischemic 
stroke, and SCD). Inclusion of 3 of these lipid species in a 
model with traditional risk factors resulted in improved risk 
discrimination and reclassification. Ganna and colleagues110 
applied untargeted MS-based metabolomics in 2698 indi-
viduals (with 413 incident events of coronary heart disease) 
and reported 4 metabolites that could be replicated and were 
independent of major cardiovascular risk factors (lysophos-
phatidylcholine 18:1, lysophosphatidylcholine 18:2, mono-
glyceride 18:2, and sphingomyelin 28:1). Together, these 4 
metabolites contributed to moderate improvements in dis-
crimination and reclassification in addition to traditional 
risk factors. Monoglyceride 18:2 showed an enrichment of 
significant associations with genetic variants known to be 
associated with coronary heart disease, as well as the sugges-
tion of a causal relation with coronary heart disease based on 
mendelian randomization analysis. Würtz and colleagues111 
used NMR spectroscopy to assess 68 lipids and metabolites 
in targeted profiling of 13 441 individuals (including 1741 
incident cardiovascular events) from 3 large cohort stud-
ies. When adjusted for traditional cardiovascular risk fac-
tors, including routine lipids, higher serum phenylalanine 
and monounsaturated fatty acid levels were associated with 
increased cardiovascular risk. Higher omega-6 fatty acids 
and docosahexaenoic acid levels were associated with lower 
risk. Risk classification with a score of these 4 metabolites 
was particularly improved for people in the intermediate risk 
range, although discrimination was not enhanced.

Although stroke was included as part of a composite car-
diovascular end point in some of the above metabolomics 
studies, there are relatively few studies applying metabolo-
mic profiling to study stroke specifically. After a few smaller 
case-control studies of cerebral infarction indicated good 
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separation of cases and controls with multivariate statisti-
cal analyses,112,113 Jové and colleagues114 performed untar-
geted metabolomics using liquid chromatography–MS in 293 
patients with transient ischemic attack to find metabolites 
associated with worse outcome. Low concentrations of lyso-
phosphatidylcholine 16:0 were significantly associated with 
stroke recurrence, whereas 2 other lysophosphatidylcholines 
(20:4 and 22:6) also showed potential as biomarkers for other 
signs of worse outcome.

Although most studies using metabolomic profiling to 
study heart failure have focused on finding diagnostic markers 
in symptomatic patients, a few studies have used metabolo-
mics to find novel predictive or prognostic markers for heart 
failure.115 Zheng and colleagues116 reported dihydroxydocosa-
trienoic acid and hydroxyleucine to be associated with inci-
dent heart failure in 1775 individuals (number of events=276) 
from the general population assessed with MS-based metabo-
lomics. Desmoulin and colleagues117 used NMR spectroscopy 
to find prognostic biomarkers in 200 patients with acute heart 
failure, and they reported that lactate, cholesterol, and the 
lactate-to-cholesterol ratio predicted 30-day mortality. Cheng 
and colleagues118 performed MS-based metabolomic profiling 
in 401 patients with heart failure and showed that a panel of 
metabolites (asymmetric methylarginine/arginine ratio, butyr-
ylcarnitine, spermidine, and total amount of essential amino 
acids) provided prognostic value independently of B-type 
natriuretic peptide and other established prognostic factors.

As may be evident from the above, although some classes 
of metabolites seem to come up as being associated with ath-
erosclerotic cardiovascular disease in many studies such as 
branched-chain amino acids, lysophosphatidylcholines, and 
fatty acids, there is substantial heterogeneity, even across 
studies with similar designs, techniques, and outcomes. The 
reasons for the discrepancies are likely several. As in any 
biomedical study, slight differences in methods can trans-
late to substantial dissimilarities in results and interpretation. 
This is especially true for new high-throughput methods for 
which there is ongoing, often intense, methods development 
in parallel with applied studies and in which small changes 
in the settings of the instrument and bioinformatics methods 
may give an entirely different set of results and hence are 
highly relevant for metabolomics, in particular MS-based 
metabolomics. Apart from continued efforts to standardize 
analytical techniques and bioinformatics approaches, other 
ways to move the field forward are likely to include increased 
collaborative efforts. This would include meta-analysis of 
results from different analytical platforms to increase sample 
sizes and generalizability of results and increased open data 
sharing. Other possible future directions for cardiovascular 
investigators using metabolomics are increased efforts at 
data integration, for example, combining metabolomics with 
genomics119 or transcriptomics120 to use different data layers 
for improved biological understanding of pathways leading 
to cardiovascular diseases.

Peripheral Cell Analysis
To further take advantage of the expressed genome in the diag-
nosis, prognosis, and therapeutic decision making for patients 
with cardiovascular diseases, accessing cell population 

subsets and interrogating them for the expressed genome are 
gaining acceptance and have a few notable advantages. First, 
one can focus on selected cell populations that may be more 
relevant for the disease of interest than analyzing an admix-
ture of a variety of cell types (the focused profile). Second, 
the circulating cell population, particularly immune cell sub-
sets, may contain enriched mirrored information pertaining to 
areas of injury or inflammation, thus providing insight into 
diseased tissues (the surrogate biopsy). Finally, specific cell 
populations of interest may be extracted and propagated under 
precise environments to provide a more controlled systems 
biology profile, creating a platform of a “disease in a dish.”

In addition to the analysis of expressed genes in cells, there 
is recent enthusiasm for the systematic analysis of microRNAs 
in the blood, which are remarkably stable in circulation and 
may function as disease biomarkers.56 MicroRNAs normally 
function to regulate gene expression and can potentially be 
delivered to target cells to ectopically regulate genes. Similarly, 
one could also use proteomic approaches to identify changes 
in expressed protein abundance, or protein modifications, as 
part of the profiling to characterize the pathophysiological 
process. It has been suggested that a combined approach, for 
example, integrating transcriptomic and proteomic data, will 
ultimately be the most useful for the understanding of disease 
pathways.121 Through combinatorial analyses, one may be 
able to understand the precise interactions of susceptibility, 
environmental epigenetic regulation, and functional protein 
production to influence clinical outcomes.

In terms of cell source, the most direct means to study 
cardiovascular diseases is cardiac and vascular biopsies. 
The retrieved cells can be phenotyped by immunostaining 
or extracted, for example, by laser capture, and analyzed for 
profiles related to the expressed genome. The cells can thus 
be sources for mRNA, microRNA, proteomic, or metabolo-
mic profiles. For example, the evaluation of gene or protein 
profiles is used for the diagnosis of cardiac amyloidosis.122 
However, obtaining any of these types of samples requires 
invasive techniques. In situations in which the disease process 
is systemic, analysis of more readily accessible peripheral tis-
sues such as skin or fat cells can be very informative.

The bloodstream provides a noninvasive source of cells to 
examine the expressed genome. The expression profiles of cir-
culating immune cells, including innate immune (macrophage 
and dendritic cells) and acquired immune (T and B cells) pop-
ulations, often reflect the internal biological environment of 
the host, particularly under stress conditions. An early study 
of 41 patients with CAD demonstrated that the gene expres-
sion analysis of peripheral blood mononuclear cells identified 
14 unique genes with an expression that reflected the actual 
severity of coronary disease.27 This was replicated in a second 
cohort of 107 patients, consistent with the notion of a poten-
tially important interplay of inflammatory cell gene expres-
sion and coronary atherosclerosis.

Supporting this concept further was a recent study involv-
ing 24 320 individuals seeking novel risk markers for athero-
sclerotic coronary disease. The study identified a number of 
recessive genes that show “runs of homozygosity” in associa-
tion with CAD. These genes are a coordinated subset of 44 
mRNAs expressed in monocytes and 17 mRNAs expressed 
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in macrophages, suggesting again that changes in the gene 
expression in these key inflammatory cell types can contribute 
to the pathogenesis of atherosclerosis.123

Further analysis and phenotyping of innate immune 
cells such as macrophage and dendritic cells, whether in 
the circulation or from local tissues, can reflect the changes 
in the expressed genome and evolving polarity in differ-
ent settings of tissue injury. Indeed, within the immune cell 
population, the gene expression and cytokine production 
patterns can differentiate between the proinflammatory 
and regenerative subsets, often referred to as the M1 and 
M2 macrophage polarization states, respectively. In human 
atherosclerotic plaques, M1 proinflammatory macrophages 
were found to dominate in the rupture-prone shoulder 
regions of the plaques, and the more protective M2 popula-
tion was located in stable portions of the plaques and the 
adventitia of blood vessels.124

Similar to the example of the role of the expressed genome 
in atherosclerosis, efforts have been extended to understand-
ing obesity and cardiometabolic risk in patients. Gene and pro-
tein expression analyses of fat and inflammatory cells in obese 
diabetic patients have been performed. Mraz and colleagues125 
examined inflammatory cytokine profiles and mRNA expres-
sion in adipose tissue and macrophages in 20 obese women 
compared with 15 control subjects and found increased 
expression of chemotactic and proinflammatory factors such 
as CD68, CCR-1, CCR-3, CCR-5, and Toll-like receptors 2 
and 4 among the obese patients. A 2-week intervention with a 
very-low-calorie diet led to a significant decrease of chemo-
kine receptors in the harvested macrophages and decreased 
chemokines in the adipose tissues. This might point to an 
inflammatory signaling network associated with the meta-
bolic syndrome and the plasticity of the expressed genome 
in response to environmental changes. A different interven-
tion, bariatric surgery, is known to decrease the presence of 
diabetes mellitus and its complications over time in morbidly 
obese patients, although the mechanism is unclear. Poitou and 
colleagues126 analyzed RNA expression profiles directly from 
adipose tissue in 22 obese women before and 3 months after 
bariatric surgery. Their data suggested a major downregula-
tion of innate and adaptive immune pathways and a reduction 
in interferon signaling to be potentially responsible for the 
improvement in clinical outcomes.

A parallel approach has been to perform peripheral mono-
nuclear cell proteomics to define the expressed protein dif-
ferences between obese and lean patients. The investigators 
found that among obese patients, there were increases in pro-
inflammatory signals such as thrombospondin-1, a glycopro-
tein with proinflammatory and antiangiogenic properties.127 
On the other hand, histone deacetylase 4, an epigenetic anti-
inflammatory regulatory protein, was downregulated among 
obese patients. Intriguingly, these abnormal protein profiles, 
although suggesting an overactive inflammatory response, 
could be significantly reversed by exercise.

Because the bulk of the expressed genome in whole blood 
represents contributions from circulating cells, one may 
gain glimpses into biological processes or disease pathways 
by examining the whole blood for expressed genes or pro-
teins rather than specific cell types. For example, Peters and 

colleagues128 recently examined the transcriptomic patterns 
associated with aging by performing a whole-blood gene 
expression meta-analysis of 14 983 individuals. The differ-
entially expressed genes reflected changes in metabolic func-
tion, transcriptional and translational dysfunction, immune 
senescence, and mitochondrial decline. These transcriptomic 
changes were in turn associated with cardiovascular risk phe-
notypes such as increases in blood pressure, cholesterol levels, 
fasting glucose, and body mass index.

An interesting consequence of inflammatory cell load and 
activation, reflecting disease activity, is that with increased 
inflammation, there is associated shortening of leukocyte telo-
meres.129 O’Donovan and colleagues130 found in a cohort of 1962 
adults in their eighth decade that leukocyte telomere length was 
strongly associated with level of interleukin-6 and tumor necro-
sis factor-α release. This likely reflects the accelerated aging 
process and higher turnover of the immune cells in the setting of 
increased inflammation. Studies by Epel and colleagues131 in the 
MacArthur Health Aging Study found that the rate of telomere 
length change in leukocytes predicts overall mortality and is a 
strong independent prognostic factor for survival.

Finally, peripheral blood cells or cells from other tissue 
sources may be reprogrammed to become induced pluripo-
tent stem cells suitable to model certain aspects of disease by 
incorporating the individual genetic susceptibility together 
with molecular and functional changes associated with dis-
ease phenotype.132,133 These cells may be differentiated into 
myocardial or vascular lineages to permit detailed studies 
of the expressed genome. This technology can provide both 
insights into the disease phenotype and a platform from 
which to derive innovative biomarkers and to test therapeu-
tic interventions in a patient-specific manner.134 The induced 
pluripotent stem cells may also be differentiated into mono-
nuclear cell–derived macrophages to model, for example, cel-
lular polarization in disease states. This has been applied in 
the analysis of genetic conditions such as Tangier disease to 
provide biological insights through changes in the expressed 
genome in differentiated Tangier disease macrophages com-
pared with control macrophages.135

Although expressed genome profiling of peripheral cells 
has advanced our biological understanding of cardiovascular 
diseases and enabled more sophisticated research studies, its 
translation into clinical practice has been much slower. As 
described in an earlier section, one area of clinical utility has 
been the detection of cardiac transplant rejection after sur-
gery. Based on changes in whole blood gene expression pro-
files, a rejection score has been developed using a number of 
genes presumably involved in T-cell and natural killer cell 
activation and stem cell mobilization in the bloodstream. The 
rejection score was evaluated in the IMAGE trial (Invasive 
Monitoring Attenuation Through Gene Expression), which 
showed that gene expression profiling was noninferior to 
routine biopsies between 6 and 60 months after transplanta-
tion.55 A more recent trial evaluated the same scoring tool 
among patients at a much earlier posttransplantation stage, 
between 55 days and 6 months. The results also showed that 
gene expression profiling was noninferior to biopsies while 
providing guidance with respect to corticosteroid weaning for 
the patients being thus monitored.136
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Molecular Imaging
Analysis of the expressed genome in whole blood or spe-
cific circulatory cells provides a general systemic readout 
of changes in RNA or protein levels in response to external 
stress predicated by the genetic background of an individ-
ual. However, the information does not necessarily provide 
information on the geographic localization or the extent of 
involvement of the injured or stressed organs or tissues. To 
take precision medicine to the next level of personalization 
and localization, it would be ideal to be able to characterize 
the degree of molecular expression in specific organs or tis-
sues of interest and to quantify the changes over time or in 
response to treatment.

The ability to tag specific molecular entities such as pro-
teins, drugs, or metabolic substrates with imaging-detectable 
tracers has raised the possibility of evaluating the expressed 
genome directly in vivo in patients. The tracers available for 
imaging can include positron-emitting labels (eg, C-11, N-13, 
F-18, Cu-64, Zi-89) suitable for positron emission tomog-
raphy (PET), gamma-emitting labels (e.g., Tc-99m, In-111, 
I-123), or paramagnetic (gadolinium, C-13)/ferromagnetic 
(iron oxide) labels for magnetic resonance imaging. The 
ability to label specific protein species, drugs, and metabolic 
substrates permits the tracking of these injected, inhaled, or 
ingested moieties in patients in terms of localization, quan-
tification, and kinetics of specific products of the expressed 
genome.

One example of abnormally expressed proteins that can be 
detected by molecular imaging occurs in cardiac amyloido-
sis. Increasingly, mutations of the transthyretin protein, which 
is made in the liver to transport thyroxine and retinol, have 
been recognized to lead to protein misfolding and aggrega-
tion. Similarly, in patients with multiple myeloma, abnormal 
light chains can also accumulate in the heart. The deposition 
of abnormal amyloid fibrils in the myocardium can lead to 
restrictive infiltrative cardiomyopathy with a median sur-
vival of ≈2 years.122 Traditionally, the abnormal mutated pro-
teins have been identified on myocardial biopsy with special 
staining or protein electrophoresis or sequencing. Recently, 
[F-18]-flobetapir, a specific amyloid protein–labeling, pos-
itron-emitting tracer approved for amyloid imaging in the 
brain, has demonstrated specificity in identifying cardiac 
amyloid deposition in patients with amyloidosis in a proof-of-
concept pilot study.137 In the future, the amyloidogenic protein 
may be detected first through noninvasive imaging strategies, 
complementing and possibly replacing the myocardial biop-
sies currently in use to make the diagnosis.

[F-18]deoxyglucose is a positron-emitting glucose analog 
that can delineate cellular uptake and metabolism of glucose 
in the tissues and organs. In addition to the myocardium, 
inflammatory cells such as activated macrophages can take up 
significant amounts of label. With the appropriate suppression 
of glucose uptake in the myocardium, one can identify local-
ized inflammatory processes in the atherosclerotic plaque or 
myocardium. In particular, [F-18]deoxyglucose imaging may 
provide an early diagnosis of atherosclerosis, especially with 
respect to active vulnerable plaques that are prone to rupture 
in the carotid or coronary circulation.138 Furthermore, [F-18]
deoxyglucose PET has proven to be valuable in identifying 

inflammatory processes in the myocardium, for example, 
sarcoidosis. This has been very helpful in identifying inflam-
matory cell localization and severity in patients suspected of 
having sarcoid heart disease and in allowing the monitoring of 
response to therapy.139

To more specifically detect vulnerable plaques, Müller and 
colleagues140 compared the levels of matrix metalloproteinases 
(MMPs), proteolytic enzymes expressed by local inflamma-
tory cells, in vulnerable plaques removed by carotid endar-
terectomy and control samples. MMP-1, MMP-9, MMP-12, 
MMP-14, and CD68 were all increased in vulnerable plaques. 
An [F-18]–labeled MMP-2/MMP-9 inhibitor specifically tar-
geting activated MMPs was successful in labeling atheroscle-
rotic plaques but did not distinguish vulnerable plaques from 
stable plaques with high specificity. An alternative strategy is 
to use [F-18]–labeled folate to detect folate receptor β, which 
is overexpressed in activated macrophages in the inflamma-
tory plaque and has been found to concentrate in vulner-
able plaques removed by carotid endarterectomy.141 A hybrid 
approach combines PET with computed tomography to iden-
tify the dynamics of calcium deposition in active plaques. This 
can be accomplished by [F-18]–labeled sodium fluoride imag-
ing with PET to identify patients with coronary plaque vulner-
ability associated with increased cardiac events, together with 
calcium score assessed by computed tomography.142

Protein ligands or small-molecule moieties or drugs can be 
labeled and used to detect the specific localization and quanti-
tative expression of specific cell surface receptors and poten-
tial changes under stress or injury. Using this technology, one 
could detect type I angiotensin receptor using [C-11]methyl-
losartan or [In-111]angiotensin for PET or radionuclide imag-
ing quantification, respectively.143 Conversely, one could label 
inflammatory cells with lysosomal degradation substrates 
with iron particles so that the process is detectable through 
magnetic resonance imaging. A more targeted approach has 
been the use of magnetization-susceptible labeling of vascular 
cell adhesion molecule-1, which has been effective in detect-
ing the inflammatory changes in both core and penumbral 
regions in the brain after middle cerebral artery occlusion in a 
mouse model of stroke.144

Molecular imaging of the expressed genome is still very 
early in its development. In contrast to high-throughput tech-
niques now available for transcriptomics, epigenomics, pro-
teomics, and metabolomics, molecular imaging labeling to 
date delineates only 1 or very few selected targets at a time. In 
the future, the use of multiple labels of different energies and 
the increased availability of hybrid imaging modalities such 
as PET–computed tomography and PET–magnetic resonance 
will expand the repertoire of tools for molecular imaging of 
the expressed genome.

Conclusions
Transformational technologies paired with the completion of 
the Human Genome Project have unleashed an unprecedented 
wave of omics studies that promise not only to deepen our 
understanding of cardiovascular diseases and stroke but also 
to facilitate a much improved ability to diagnose, predict, 
and prognosticate diseases in individual patients, a key goal 
of precision medicine. We now have the ability to address 
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disease at many levels that were inaccessible to us during 
the past century: the genome, transcriptome, epigenome, 
proteome, metabolome, cells, tissues, and organs. Each of 
the omics approaches remains a work in progress, as out-
lined in this statement, and many of the initial findings are 
still awaiting systematic replication in independent studies. 
Nonetheless, we can expect the next 5 to 10 years to witness 
enormous progress in the application of the approaches to the 
study of specific cardiovascular diseases in patients. A critical 
step to facilitate the eventual widespread use of the expressed 

genome in the clinic is funding of large-scale efforts to vali-
date, replicate, and integrate the information streams arising 
from various omics studies such as the National Heart, Lung, 
and Blood Institute’s Trans-Omics for Precision Medicine 
Program. As such efforts come to fruition, we can expect a 
host of novel disease biomarkers to emerge and find applica-
tion in the clinic, as well as a new push to understand the inter-
actions of genetics and environment in disease pathogenesis. 
For cardiovascular investigators, one can scarcely imagine a 
more exciting time to be engaged in translational research.
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